Changes

Jump to: navigation, search

Tight Gas Fracturing Technology and Patent Report

62,943 bytes added, 11:21, 4 July 2012
All the patents obtained from the database were filtered to find out the most relevant patents, this process included going through the full text of the patent. Relevant patents related to stimulation technique for tight gas formations were found. This was followed by a detailed analysis of the relevant records. All the patents were analyzed to capture the focus of the patent, stimulation technique described in the invention and the fracturing ingredients used in the invention. The analyses of the patents lead to following observations:
====Top Assigneesand Inventors====Schlumberger, Exxonmobil and Halliburton feature in this listamong the top assignees.
[[Image:doc1.jpeg|center|500px]]
===Halliburton===
[http://appft1.uspto.gov/netacgi/nph-Parser?Sect1=PTO1&Sect2=HITOFF&d=PG01&p=1&u=%2Fnetahtml%2FPTO%2Fsrchnum.html&r=1&f=G&l=50&s1=%2220110209868%22.PGNR.&OS=DN/20110209868&RS=DN/20110209868 US20110209868A1] titled "Fracturing a '''stress-altered subterranean formation'''" by Halliburton. Fracturing of a stress- altered subterranean formation is difficult to perform. Fracturing of stress altered formation using signaling subsystem communicably coupled with injection tools installed in the well bore.'''Signaling subsystem''' adapted to transmit control signals from a well bore surface to each injection tool to change the state of the injection tool according to stress condition....[Contd]
'''Signaling subsystem''' adapted to transmit control signals from a well bore surface to each injection tool to change the state of the injection tool according to stress condition. It can modified stresses, thus fracture network can be created along a substantial portion of a horizontal well bore. [http://appft1.uspto.gov/netacgi/nph-Parser?Sect1=PTO1&Sect2=HITOFF&d=PG01&p=1&u=%2Fnetahtml%2FPTO%2Fsrchnum.html&r=1&f=G&l=50&s1=%2220090288833%22.PGNR.&OS=DN/20090288833&RS=DN/20090288833 US20090288833A1] titled "System and methods for constructing and fracture stimulating multiple ultra-short radius laterals from a parent well" by Halliburton. Hydrocarbons are often dispersed in a stacked sequence in the reservoir. The reservoir also contains water bearing zones. Conventional equipment cannot be used for drilling and stimulation of multi lateral well as they are very time consuming, and expensive in nature. It provide a systems and methods for constructing '''multiple ultra-shot radius laterals''' from a parent well and stimulating the subterranean zones intersected by multiple lateral wellbores extending outwardly from one or more parent wellbores by injecting a stimulation fluid into the lateral wellbores; and stimulating the zones intersected by the lateral wellbores. ....[Contd]
===Schlumberger===
===Information from the Article===
Many authors have talked about massive hydraulic fracturing <u>Ahmed et al</u>. in 1979, <u>Hanson, in 1981 </u>and <u>Schubarth et al. in 2006</u>. '''Massive hydraulic fracturing '''(MHF) is a primary candidate for stimulating production from the tight gas reservoirs in the U.S. MHF is a more recent application that differs from hydraulic fracturing in that more fluid and proppant are pumped to create more extensive fractures in the reservoir. Application of MHF to increase production from the tight reservoirs has provided mixed and, in many cases, disappointing results especially in lenticular reservoirs (<u>Hanson,1981</u>)... [Contd]
===Summary of Hydraulic fracturing===
===Schlumberger===
<font color="#0000FF"><u>[http://appft1.uspto.gov/netacgi/nph-Parser?Sect1=PTO1&Sect2=HITOFF&d=PG01&p=1&u=%2Fnetahtml%2FPTO%2Fsrchnum.html&r=1&f=G&l=50&s1=%2220110024121%22.PGNR.&OS=DN/20110024121&RS=DN/20110024121 US20110024121A1] </u></font> titled "Method and apparatus for multilateral multistage stimulation of a well" by Schlumberger. It employs a '''continuous multistage fracturing of lateral wells by wellbore isolation and focused fracturing placement'''. Fracturing multilateral wellbores in a single mobilization of fracturing unit(s) by sequentially connecting a fracturing tubing string to each lateral wellbore, directing a fracturing fluid at that specific lateral wellbore in a manner to achieve the desired fracturing and isolating those lateral wellbore after it is fractured. -The technique involves drilling and fracturing a first lateral wellbore; plugging the first lateral wellbore; and then drilling and fracturing a second lateral wellbore, plugs or other suitable isolation devices to isolate lateral wellbores and to enable the fracturing of specific lateral wellbores. Method enables the continuous pumping of fracturing fluid during fracturing of multiple lateral wellbores due to a single rig mobilization....[Contd]
===Information from the Articles===
Saldungary et. al., 2008 of '''Schlumberger''', studied on Efficient Multifractured Horizontal Completion change the economic equation in Latin America; they have discussed the effect of '''Effective Multistage Fracturing System (EMFS). '''The system consists of mechanical open hole packers, are capable of withstanding high differential pressures at high operating temperatures, with specially designed fracturing ports (FracPorts), are located between the packers. It shows completion of horizontal wells in a time efficient manner (Time savings of 10 days were observed while increasing the number of frac stages from 3 to 5), and reduction in completion cost can be done easily, maximized reservoir contact and productivity in treated wells. MEFS had increased the gas production rate to 543000m<sup>3</sup>/day per well....[Contd]
===Summary of Multi Stage Fracturing===
===Baker Hughes===
[http://appft1.uspto.gov/netacgi/nph-Parser?Sect1=PTO1&Sect2=HITOFF&d=PG01&p=1&u=%2Fnetahtml%2FPTO%2Fsrchnum.html&r=1&f=G&l=50&s1=%2220100089580%22.PGNR.&OS=DN/20100089580&RS=DN/20100089580 US20100089580A1] titled "Method of enhancing fracture conductivity" by Baker Hughes. In hydraulic fracturing, fracturing fluid containing gelled fluid, viscosifying polymers and surfactants used to provide fluid viscosity for proppant packing but often leads to the formation of filter cake which causes conductivity damage....[Contd]
-Fracturing through low viscosity fracturing fluids like water, salt brine and slickwater show difficult in producing desired fracture length as proppant placement in the fracture is often not possible in low viscosity fluids -Hybrid fracturing technique was also not able to control the conductivity damage due to use of proppant laden slickwater slurry. Fracturing method in two stages helps in reducing the conductivity damage. The two stages comprise of first stage which is the introduction of '''proppant free stage''' and the second is the '''proppant ladden stage'''. Additives such as viscosifying polymer, friction reducers and viscoelastic surfactant comprising fracturing fluid were used in any one of the two stage process. Further flushing with breaker containing fluid in two stage process helps in degrading and disintegration of the filter cake and thus helps in reducing the conductivity damage. [http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO1&Sect2=HITOFF&d=PALL&p=1&u=%2Fnetahtml%2FPTO%2Fsrchnum.htm&r=1&f=G&l=50&s1=7699106.PN.&OS=PN/7699106&RS=PN/7699106 US7699106B2] titled "Method for reducing fluid loss during hydraulic fracturing or sand control treatment" by Baker Hughes. Hydraulic fracturing treatment using high ASG (Apparent Specific Gravity) proppant and high viscous fracturing fluid often leads to- -High ASG leads directly to increasing degree of difficulty with proppant transport and reduced propped fracture volume, thereby reducing fracture conductivity. -Polymer-based fracturing fluids leads to creation of a relatively impermeable filter cake and thereby damaging the desired conductivity of the proppant pack, in some cases reducing the proppant pack conductivity by over 90%....[Contd]
===Information from the Articles===
Pearce et. al., 2002 of The '''Houston Exploration Co '''studied on successfully pushing the limits in tight gas fracturing. A South Texas tight gas field was fractured using '''LPF (Lower-polymer fluid) system'''. LPF system avoided the proppant damage due to less polymer residue, and improved well productivity through increased fracture conductivity. Gupta et. al., 2011 studied Associative polymer systems that extend the temperature range of surfactant gel frac fluids. New thickening system for fracturing was prepared using viscoelastic Surfactant (VES), low molecular weight associative polymer and three or four additives compound. New thickening fracturing fluid showed good clay control, friction reduction, water wetting and post frac fluid recovery characteristics and could be easily converted into high temperature stable foam....[Contd]
===Summary of Slickwater fracturing===
===Schlumberger===
[http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO1&Sect2=HITOFF&d=PALL&p=1&u=%2Fnetahtml%2FPTO%2Fsrchnum.htm&r=1&f=G&l=50&s1=7380602.PN.&OS=PN/7380602&RS=PN/7380602 US7380602B2] titled "Composition and method for treating a subterranean formation" by Schlumberger. Matrix acidizing treatment leads to the problem of (1) inadequate radial penetration (portions of the formation away from the wellbore in the radial direction is untouched by the acid because all of the acid reacts before it can get there); (2) incomplete axial distribution(acid does not reach other parts of the formation along the wellbore where it is actually desired most because the acid begins to dissolve the most reactive or first-contacted material in the wellbore and/or the matrix, so diversion of the acid is required to treat the desired zones); (3) corrosion of the pumping and well bore tubing (4) and iron precipitaion in sour wells....[Contd]
-Acid treatments is susceptible to the temperature of the subterranean formation and the metal corrosion is enhanced at high temperatures '''Treating a subterranean carbonate with a fluid comprising of an acid, chelating agent, or betaine surfactant''' which is pumped into the subterranean carbonate formation before mixing, called as a self-diverting wormholing acid fluid system or a self-diverting retarded acid fluid system -Low pH solution of chelating agent pH of less than about 3 and above about 1 and a pH value at which the free acid form of the chelating agent precipitates (i.e. pH above about 1), is made by adding an acid to the chelating agent, the acid gets consumed to partially neutralize the chelating agent and therefore the acid which reduces the pH of the solution of a chelating agent does not react with the formation. [http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO1&Sect2=HITOFF&d=PALL&p=1&u=%2Fnetahtml%2FPTO%2Fsrchnum.htm&r=1&f=G&l=50&s1=6828280.PN.&OS=PN/6828280&RS=PN/6828280 US6828280B2] titled "Methods for stimulating hydrocarbon production" by Schlumberger. In hydraulic and acid fracturing, a first, viscous fluid called a "pad" is typically injected into the formation to initiate and propagate the fracture and often to contribute to fluid loss control and mainly consist of polymers. Hence there is a need of an inexpensive material for the pad so that a) It creates and propagates a sufficiently wide fracture, b) Minimize chemical, equipment and hydraulic horsepower expense, c) Capable of forming a filter cake to control leak-off during the job (not required when acid fracturing with a low viscosity acid) and d) Degradable to maximize subsequent production. Methods are provided for stimulation of hydrocarbon production from low permeability formations by hydraulic fracturing, '''acid fracturing''', and hydraulic fracturing followed by gravel packing in a single operation....[Contd]
===Information from the Articles===
Al-Ghurairi et. al., 2003 of '''Saudi Aramco''', studied on Successful Fracturing through optimizations steps for high rate deep gas wells in carbonate reservoirs of Saudi Arabia where acid fracturing treatments was applied at Khuff reservoir, gelled HCl acid system, emulsified acid (consisting of HCl acid and diesel) was tested for tight reservoirs to achieve deeper penetration. Optimization process of acid fracturing treatment shows significant benefits like cost reduction, time saving, lesser stage and higher hydrocarbon recovery in the development of Khuff reservoir. Cost reduction averaging of 33 % in one stage fracture operation to 19 % in two stage operations can be done by optimizing the stimulation technique....[Contd]
===Summary of Acid fracturing===
===Schlumberger===
[http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO1&Sect2=HITOFF&d=PALL&p=1&u=%2Fnetahtml%2FPTO%2Fsrchnum.htm&r=1&f=G&l=50&s1=7726404.PN.&OS=PN/7726404&RS=PN/7726404 US7726404B2] titled "Use of carbon-dioxide-based fracturing fluids" by Schlumberger. Conventional hydraulic and slickwater fracturing leads to the problem of fluid leak off, well damage and water blocks. Treatment of shale-containing subterranean formation is carried out by forming a '''carbon dioxide treatment fluid''' having a viscosity of less than about 10 mPa-s at a shear rate of about 100 s.sup.-1. and comprising of 90% by weight carbon dioxide and a surfactant. CO<sub>2</sub> has ability to displace methane from the shale-containing formations....[Contd]
===Summary of Carbon dioxide Fracturing===
===Halliburton===
[http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO1&Sect2=HITOFF&d=PALL&p=1&u=%2Fnetahtml%2FPTO%2Fsrchnum.htm&r=1&f=G&l=50&s1=5990052.PN.&OS=PN/5990052&RS=PN/5990052 US5990052A] titled "Foamed fracturing fluid" by Halliburton. Fracturing fluids must provide an optimal balance between minimizing fluid leakage, filtercake buildup thickness and filtercake removal as it impairs the permeability and conductivity of the formation. Need of a foamed fracturing fluid that has the performance advantages of crosslinked gel foams but which deposits a filtercake which can be substantially completely removed after the fracturing operation is completed. Foamed fracturing fluid composition is disclosed consisting of crosslinked foamed fracturing fluids which are more readily removed from the fractured formation after the fracturing operation is complete, leaving substantially no residual filter cake that restricts production of oil or gas. The composition of the foamed fracturing fluid comprises of a viscosifier which is preferably either hydrophobically modified guar or hydroxymethylcellulose, a surfactant which is preferably alpha olefin sulfonate and the gas phase includes either nitrogen or carbon dioxide. It was also found that HMG (hydrophobically modified guar) foams drained out faster than the cross linked foams. <font color="#0000FF"><u>US5310002A </u></font>titled "Gas well treatment compositions and methods" by Halliburton <font color="#FF0000">(Also in foam)</font>. Treatment fluids or fracturing fluids remaining in the pores of the formation and water blocks leads to kind of damage that impairs subsequent hydrocarbon production from the formation. The microemulsion generating component and foaming agent component function to enhance the ability of the compositions to remove any blocks of fluids interlocked with gas in formations after the desired treatment is achieved -The well treatment fluid can be an acid, an aqueous acid solution or an aqueous non-acid solution. -Additive comprises 25% to about 50% by volume of a microemulsion generating component and about 50% to about 75% by volume of a foaming agent component. -After addition of additive to the well treatment fluid, microemulsion generating component forms an acid and/or water external microemulsion with the alkyl alcohol and a two-phase fluid is formed....[Contd]
<font color="#0000FF"><u>US5310002A </u></font>titled "Gas well treatment compositions and methods" by Halliburton <font color="#FF0000">(Also in foam)</font>. Treatment fluids or fracturing fluids remaining in the pores of the formation and water blocks leads to kind of damage that impairs subsequent hydrocarbon production from the formation. The microemulsion generating component and foaming agent component function to enhance the ability of the compositions to remove any blocks....[Contd]
===Information from the Articles===
Walser et. al., 2001 of '''BJ Services Company '''USA, studied on Production response from Southeastern New Mexico Morrow wells stimulated with binary foam. Stimulation and fracturing of Morrow formation in south eastern New Mexico was performed with binary foam fracturing fluid. Stimulation fluid contains liquid CO<sub>2</sub>, gaseous nitrogen, gelled 2% KCl water, methanol and hydrated polymer are added in the base gelled water. First 90-day cumulative gas production rate was found higher in foam fluids as compared to other system. Morrow zones fracture-stimulated with binary foams completion wells were 78459 MSCF/D gas production rate and offset well without frac. gas production was 28710 MSCF/D....[Contd]
===Summary of Foam Fracturing===
===ExxonMobil===
[http://www.wipo.int/pctdb/en/wo.jsp?WO=2011115723 WO2011115723A1] titled "System and method for fracturing rock in tight reservoirs" by ExxonMobil. A conventional hydraulic and explosive fracturing lead to pervasive, isotropic permeability increase in the rock of the formation but does not create a spatially extensive network of fractures. Moreover hydraulic fracturing has problems of well damage when using gel based fluids and water based fluids which create a hindrance in the flow of the hydrocarbons from the formation after completion. Multi lateral wells are drilled and explosives are placed in the lateral drilled wells. '''Explosion fracturing is done in the lateral wells by using a squash head charge'''. Squash head charge is oriented towards the face of the wells by a frame, internal electrical bus is coupled which transmit electrical signal to detonate the squash head charge, a propellant charge propels a proppant into fractures induced in the rock face by an explosion of the squash head charge....[Contd]
===Information from the Articles===
===Summary of Explosive Fracturing===
Both Exxonmobil and Geodynamics Inc have has worked on increasing the permeability of the formation by inducing explosive fracturing. Geodynamics has worked on technique which can overcome the problem of blockages created by the fines(debris) generated due to explosion whereas Exxonmobil has adopted a technique of drilling lateral wells and placing the squash head charge in the wells. PetroChina conducted experiment test on IFEHFF and shows positive results...[Contd]
==Sleeve fracturing==
===Coiled Tubing Specialties===
[http://appft1.uspto.gov/netacgi/nph-Parser?Sect1=PTO1&Sect2=HITOFF&d=PG01&p=1&u=%2Fnetahtml%2FPTO%2Fsrchnum.html&r=1&f=G&l=50&s1=%2220110290561%22.PGNR.&OS=DN/20110290561&RS=DN/20110290561 US20110290561A1] titled "Downhole Hydraulic Jetting Assembly, and Method for Stimulating a Production Wellbore" by Coiled Tubing Specialties. Need of a method for forming lateral boreholes from a parent wellbore for hydrocarbon recovery from the formation. It provides a new stimulation technique for hydrocarbon-producing formation by the formation of small lateral boreholes from an existing wellbore using a hydraulic jetting assembly....[Contd]
===Information from the Articles===
Rahim et. al., 2011 of '''Saudi Aramco '''studied on success criteria for Multistage Fracturing of tight gas in Saudi Arabia. Open Hole Multi Stage (OHMS) fracturing was used to improve hydrocarbon production from the deep gas carbonate sandstone wells in Saudi Arabia. Here authors talk about dual sleeve hydraulic fracturing device. OHMS system with dual hydraulic sleeves works efficiently and never showed any sign of failure in getting open. Generally ball (diameter ½", ¼", and 1/8") activated fracturing sleeves was used to open access to different stages....[Contd]
===Summary of Sleeve Fracturing===
===Groundwater Services Inc.===
[http://www.wipo.int/pctdb/en/wo.jsp?WO=2008041990 WO2008041990A1] titled "Methods and systems for '''stimulating biogenic''' production of natural gas in a subterranean formation" by Groundwater Services Inc. Conventional processes for recovery of hydrocarbon from the formation show following disadvantages such as-<br>-Heat treatment for kerogen formation method shows intensive process, requiring both an abundance of water and a ready supply of energy for producing hydrocarbon. <br>-Retorting processes shows environmental impacts, and yield undesirable by-products.<br>-Thermal in situ conversion method shows high initial capital costs and the operational costs. A new method and systems for stimulating anaerobic biologic production of methane from non-liquid hydrocarbon-bearing subsurface formations. It comprises of subsurface formation comprising a hydrocarbon; an injection fluid disposed within the fractures; and indigenous microorganisms disposed within the formation. The advantages of the present are low energy consumption, no byproduct generation and ecofriendly bioconversion method for converting hydrocarbon to methane from these formations. This method can be used in combination with Hydraulic fracturing and Pneumatic fracturing..[Contd]
===Information from the Article===
'''Lan et. al., 2010 '''of '''Drilling Research Institute of Shengli Oilfield''', Dongying, Shandong studied on application of '''bio-enzymatic '''completion fluid in the tight sand gas reservoirs of ordos Daniudi Gas field. Solid free brine completion fluid shows a little effect on the formation damage, water blocking and solid slugging with small particle. An environment acceptable and nontoxic bio-enzymatic completion fluid was prepared and tested in 15 horizontal wells of Ordos Dainiudi gas field. Excellent hydrocarbon gas production of well is higher than that of adjacent wells after stimulation. It also reduces the viscosity of drilling fluid by degrading the polymer, greatly reduce the formation water sensitivity and water blocking damages..[Contd]
===Summary of Hydrocarbon recovery by using biogenic materials combined with Pneumatic fracturing===
===Univ Louisiana State===
[http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO1&Sect2=HITOFF&d=PALL&p=1&u=%2Fnetahtml%2FPTO%2Fsrchnum.htm&r=1&f=G&l=50&s1=5083615.PN.&OS=PN/5083615&RS=PN/5083615 US5083615A] titled "Aluminum alkyls used to create multiple fractures" by Univ Louisiana State. The pressure rise after fracturing is the important parameter in determining the fracture pattern. The time required for the pressure rise is found to be longest in hydraulic fracturing. So to control the fracture pattern the pressure rise time has to be controlled. A chemical reaction which produces heat and gas will increase the pressure of the system. This pressure is used to fracture the rocks and stimulate water, oil or gas wells in tight rock formations. The '''pressure pulses''' are generated by the reaction of aluminum alkyl with either water, or alcohol, or acid, or a combination of water and alcohol, or a combination of water and acid. The pressure rise time indicates that the reaction is most likely in the multiple/single fracture regime. Univ Louisiana State in 1992 stimulated water, oil or gas production by pressure pulses which are generated by the chemical reaction which produces heat and gas using Aluminum alkyls.[Contd]
==Propellant Fracturing==
|-
|}
 
'''Carter E. E'''
 [http://appft1.uspto.gov/netacgi/nph-Parser?Sect1=PTO1&Sect2=HITOFF&d=PG01&p=1&u=%2Fnetahtml%2FPTO%2Fsrchnum.html&r=1&f=G&l=50&s1=%2220110247816%22.PGNR.&OS=DN/20110247816&RS=DN/20110247816 US20110247816A1] titled "Method and Apparatus for Increasing Well Productivity" by Carter E. E., Hydraulic fracturing is not effective due to the difficulty of controlling the orientation, thickness, and magnitude of the fractures. It also uses very large volumes of chemically treated water which potentially pollute fresh water or cause earth tremors, damage natural impermeable barriers underground allowing water to intrude into new areas. Thus fracturing the wells too vigorously may also risk creating flow paths to adjacent formation layers containing water. Method and apparatus for increasing well productivity by using explosives such as '''solid rocket propellant''' are typically a mixture of ammonium perchlorate and aluminum powder in a synthetic rubber base. Propellant material were placed in the slot is cut in the wellbore by means of abrasive member. Combustible mixture is placed within the slot at a predetermined pressure such that when ignited, the mixture generates a deflagration gas pulse of suitable pressure, rise time and duration within slot which temporarily alters the orientation of the fracture gradient and hence fractures are created. The created slot is helpful in extracting mineral resources such as natural gas and thermal energy resources from hot rock.[Contd]
==High pressure & high temperature (HPHT) fracturing==
Saudi Aramco in 2009 used sodium bromide (Nabr brine)for fracturing wells....[Contd]
 
 
=Fracturing Fluids and Additives used=
 
'''Fracturing Fluid'''
 
Water based fracturing fluids has been widely used whereas hydrofluoric acids and hydrochloric acids are also commonly employed to dissolve some types of rock, wherein hydrochloric acids are very effective in carbonates.
 
 
{|border="2" cellspacing="0" cellpadding="4" width="80%"
|align = "center" bgcolor = "#C5BE97" colspan = "5"|'''Fracturing fluid'''
|-
|align = "center" bgcolor = "#C5BE97"|'''Acid'''
|align = "center" bgcolor = "#C5BE97"|'''Hydrocarbon fluid'''
|align = "center" bgcolor = "#C5BE97"|'''Gas'''
|align = "center" bgcolor = "#C5BE97"|'''<nowiki>### </nowiki>'''
|align = "center" bgcolor = "#C5BE97"|'''<nowiki>### </nowiki>'''
|-
|align = "center"|15% Hydrochloric acid
|align = "center"|Metal associated-phosphate ester gelled oils, oil, frac oils, gelled oil
|align = "center"|Carbon dioxode
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|-
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|-
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|-
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|-
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|-
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|-
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|-
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|-
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|-
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|align = "center"|
|-
|align = "center"|<nowiki>****</nowiki>
|
|align = "center"|<nowiki>****</nowiki>
|
|align = "center"|
|-
|align = "center"|<nowiki>****</nowiki>
|align = "center"|
|align = "center"|
|
|align = "center"|
|-
|align = "center"|<nowiki>****</nowiki>
|
|
|
|
|-
|}
 
===Graphical representation of Fracturing fluids used for corresponding stimulation methods===
 
[[Image:Fracturing fluids.jpg|center|800px]]
 
The combination of various fluids used for performing fracturing of reservoirs satisfactorily is shown in the above graph.
 
==Proppant==
 
'''Proppant''': Allows the fractures to remain open so the gas can escape.
 
{|border="2" cellspacing="0" cellpadding="4" width="80%"
|align = "center" bgcolor = "#B2A1C7" colspan = "6"|'''Proppants'''
|-
|align = "center" bgcolor = "#B2A1C7"|'''Sand'''
|align = "center" bgcolor = "#B2A1C7"|'''Resin-coated'''
|align = "center" bgcolor = "#B2A1C7"|'''Man-made ceramics'''
|align = "center" bgcolor = "#B2A1C7"|'''<nowiki>### </nowiki>'''
|align = "center" bgcolor = "#B2A1C7"|'''<nowiki>### </nowiki>'''
|align = "center" bgcolor = "#B2A1C7"|'''<nowiki>### </nowiki>'''
|-
|align = "center"|Sand grains
|align = "center"|Resin-coated sand,resin-coated sintered bauxite, resin coated ceramics
|align = "center"|Ceramic beads
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|-
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|-
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|-
|align = "center"|<nowiki>****</nowiki>
|
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|align = "center"|
|align = "center"|<nowiki>****</nowiki>
|-
|align = "center"|
|align = "center"|
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|align = "center"|
|align = "center"|<nowiki>****</nowiki>
|-
|align = "center"|
|align = "center"|
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|align = "center"|
|align = "center"|<nowiki>****</nowiki>
|-
|align = "center"|
|align = "center"|
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|align = "center"|
|align = "center"|<nowiki>****</nowiki>
|-
|align = "center"|
|align = "center"|
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|align = "center"|
|align = "center"|<nowiki>****</nowiki>
|-
|align = "center"|
|align = "center"|
|align = "center"|
|
|align = "center"|
|align = "center"|<nowiki>****</nowiki>
|-
|align = "center"|
|align = "center"|
|align = "center"|
|align = "center"|
|align = "center"|
|align = "center"|<nowiki>****</nowiki>
|-
|align = "center"|
|align = "center"|
|align = "center"|
|
|align = "center"|
|align = "center"|<nowiki>****</nowiki>
|-
|align = "center"|
|align = "center"|
|align = "center"|
|
|align = "center"|
|align = "center"|<nowiki>****</nowiki>
|-
|}
 
 
The proppant materials have greatly improved and the technology for specially engineered proppants continues to advance. The most widely used proppant so far is naturally occurring sand for eg. white and brown sands(Ottawa, Brady respectively), quartz sand grains. To increase the strength of the proppants resin coated proppants has been come up which are Resin-coated sand, resin-coated sintered bauxite, resin coated ceramics. Ultralight weight proppants which can easily be transported by slickwater is used currently.
 
 
'''Ultra lightweight proppant preparation-'''Below are the additives employed by '''Baker Hughes Incorporated''' to prepare porous particulate material for use as lightweight material in liquid carbon dioxide-based well treatment systems.
 
 
{|border="2" cellspacing="0" cellpadding="4" width="80%"
|align = "center" bgcolor = "#C2D69A"|'''Additives'''
|align = "center" bgcolor = "#C2D69A"|'''Role'''
|align = "center" bgcolor = "#C2D69A"|'''<nowiki>### </nowiki>'''
|-
|align = "center"|Chemical treatment
|align = "center"|Nylon, polyethylene, polystyrene chemicals
|align = "center"|<nowiki>****</nowiki>
|-
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|-
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|-
|}
 
 
===Graphical representation of Additives used for corresponding stimulation techniques===
[[Image:Additive used.jpg|800px|center]]
 
Hydraulic and slickwater fracturing employs viscosifiers for thickening the fracturing fluid which helps in proppant placement but the amount used in slickwater is less as compared to hydraulic as seen in the graph. The highest amount of breakers are used in hydraulic and slickwater fracturing as it degrades the polymers present in the well after fracturing. Friction reducers are mainly employed in slickwater fracturing.
The Role of the different additives used and the compounds employed for the corresponding additives are mentioned below.
 
==Acid==
 
'''Acid:''' Helps dissolve minerals and initiate cracks in the rock.
 
{|border="2" cellspacing="0" cellpadding="4" width="80%"
|align = "center" bgcolor = "#EAF1DD" colspan = "3"|'''Acid'''
|-
|align = "center" bgcolor = "#EAF1DD"|'''Inorganic /mineral acid'''
|align = "center" bgcolor = "#EAF1DD"|'''Simple organic acid'''
|align = "center" bgcolor = "#EAF1DD"|'''Organic aromatic acid'''
|-
|align = "center"|HCl
|align = "center"|Carboxylic acid
|align = "center"|Chlorobenzoic acid
|-
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|-
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|-
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|-
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|-
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|-
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|align = "center"|
|-
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|align = "center"|
|-
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|align = "center"|
|-
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|align = "center"|
|-
|align = "center"|
|align = "center"|<nowiki>****</nowiki>
|align = "center"|
|-
|align = "center"|
|align = "center"|<nowiki>****</nowiki>
|align = "center"|
|-
|align = "center"|
|align = "center"|<nowiki>****</nowiki>
|align = "center"|
|-
|align = "center"|
|align = "center"|<nowiki>****</nowiki>
|align = "center"|
|-
|align = "center"|
|align = "center"|<nowiki>****</nowiki>
|align = "center"|
|-
|}
 
==Biocides==
 
'''Biocides''' are added to the mixing tanks with the gelling agents to kill bacteria which otherwise can cause problems of plugging (inhibiting the flow of gas), corrosion failures of downhole equipment, solid deposition (or scale), break down the gelling agent reducing its viscosity and ability to carry proppant. Multifunctional material comprising aldehydes; formaldehyde; dialdehydes; glutaraldehyde; hemiacetals;....[Contd]
 
 
==Breaker==
'''Breaker''': It allows a delayed break down of the frac gel.
 
 
{|border="2" cellspacing="0" cellpadding="4" width="80%"
|align = "center" bgcolor = "#EAF1DD" colspan = "6"|'''Breaker'''
|-
|align = "center" bgcolor = "#EAF1DD" colspan = "4"|'''Oxidative'''
|align = "center" bgcolor = "#EAF1DD" rowspan = "2"|'''<nowiki>### </nowiki>'''
|align = "center" bgcolor = "#EAF1DD" rowspan = "2"|'''<nowiki>### </nowiki>'''
|-
|align = "center" bgcolor = "#EAF1DD"|'''Sulfate group'''
|align = "center" bgcolor = "#EAF1DD"|'''Chromate group'''
|align = "center" bgcolor = "#EAF1DD"|'''<nowiki>### </nowiki>'''
|align = "center" bgcolor = "#EAF1DD"|'''<nowiki>### </nowiki>'''
|-
|align = "center"|Ammonium persulfate – GBW 5
|align = "center"|Potassium dichromate
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|-
|align = "center"|<nowiki>****</nowiki>
|align = "center"|
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|-
|align = "center"|<nowiki>****</nowiki>
|
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|-
|align = "center"|<nowiki>****</nowiki>
|align = "center"|
|align = "center"|
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|-
|align = "center"|<nowiki>****</nowiki>
|align = "center"|
|align = "center"|
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|-
|align = "center"|
|align = "center"|
|align = "center"|
|align = "center"|
|align = "center"|<nowiki>****</nowiki>
|align = "center"|
|-
|align = "center"|
|align = "center"|
|align = "center"|
|align = "center"|
|align = "center"|<nowiki>****</nowiki>
|align = "center"|
|-
|align = "center"|
|align = "center"|
|align = "center"|
|align = "center"|
|align = "center"|<nowiki>****</nowiki>
|align = "center"|
|-
|align = "center"|
|align = "center"|
|align = "center"|
|align = "center"|
|align = "center"|<nowiki>****</nowiki>
|align = "center"|
|-
|}
 
The proper breaker selection for a given gel system is very important to the success of the fracturing treatment. The high viscosity frac fluid must sufficiently degrade with time to allow for high fracture fluid recovery rates on the flowback and cause minimal damage to the formation. Widely used oxidative breakers are sulfates, chromates, borates,....[Contd]
 
==Corrosion inhibitor==
'''Corrosion inhibitor''': It prevents corrosion of equipment (pipe, pump etc)
 
Compounds for performing the function of corrosion inhibitors employed in fracturing treatments are Azoles, quaternary amines, formic acid....[Contd]
 
==Crosslinker==
'''Crosslinker''': It helps in maintain the viscosity of frac fluids.
 
 
{|border="2" cellspacing="0" cellpadding="4" width="80%"
|align = "center" bgcolor = "#EAF1DD" colspan = "6"|'''Crosslinker'''
|-
|align = "center" bgcolor = "#EAF1DD"|'''Borates'''
|align = "center" bgcolor = "#EAF1DD"|'''Zirconium'''
|align = "center" bgcolor = "#EAF1DD"|'''<nowiki>### </nowiki>'''
|align = "center" bgcolor = "#EAF1DD"|'''<nowiki>### </nowiki>'''
|align = "center" bgcolor = "#EAF1DD"|'''<nowiki>### </nowiki>'''
|align = "center" bgcolor = "#EAF1DD"|'''<nowiki>### </nowiki>'''
|-
|align = "center"|Borate crosslinked polymer, borate crosslinked guar
|align = "center"|Zirconium lactate, zirconium lactate triethanolamine and zirconium diisopropylamine lactate
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|-
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|-
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|align = "center"|
|-
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|align = "center"|
|-
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|align = "center"|
|align = "center"|
|align = "center"|
|-
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|align = "center"|
|align = "center"|
|align = "center"|
|-
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|align = "center"|
|align = "center"|
|align = "center"|
|-
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|align = "center"|
|align = "center"|
|align = "center"|
|align = "center"|
|-
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|align = "center"|
|align = "center"|
|align = "center"|
|align = "center"|
|-
|align = "center"|<nowiki>****</nowiki>
|align = "center"|
|align = "center"|
|align = "center"|
|align = "center"|
|align = "center"|
|-
|align = "center"|<nowiki>****</nowiki>
|align = "center"|
|align = "center"|
|align = "center"|
|align = "center"|
|align = "center"|
|-
|}
 
Widely used crosslinkers are boron based and zirconium based compounds such as borate crosslinked polymer....[Contd]
 
==Friction Reducers==
 
'''Friction Reducers''': It helps in reducing the friction of the frac fluid.
 
{|border="2" cellspacing="0" cellpadding="4" width="80%"
|align = "center" bgcolor = "#EAF1DD" colspan = "4"|'''Friction reducer'''
|-
|align = "center" bgcolor = "#EAF1DD"|'''Polyacrylamide'''
|align = "center" bgcolor = "#EAF1DD"|'''Other acrylate based compound'''
|align = "center" bgcolor = "#EAF1DD"|'''<nowiki>### </nowiki>'''
|align = "center" bgcolor = "#EAF1DD"|'''<nowiki>### </nowiki>'''
|-
|align = "center"|Hydrolyzed polyacrylamide
|align = "center"|Polyacrylates
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|-
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|-
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|-
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|-
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|-
|align = "center"|
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|-
|align = "center"|
|align = "center"|<nowiki>****</nowiki>
|align = "center"|
|align = "center"|
|-
|align = "center"|
|align = "center"|<nowiki>****</nowiki>
|align = "center"|
|align = "center"|
|-
|align = "center"|
|align = "center"|<nowiki>****</nowiki>
|align = "center"|
|align = "center"|
|-
|align = "center"|
|align = "center"|<nowiki>****</nowiki>
|align = "center"|
|align = "center"|
|-
|}
 
Amongst various friction reducers like acrylate based compounds (polyisobutyl methacrylate, polymethyl methacrylate),....[Contd]
 
==Gel==
'''Gel''': It helps to suspend proppant/sand in the frac. fluids
 
{|border="2" cellspacing="0" cellpadding="4" width="80%"
|align = "center" bgcolor = "#EAF1DD" colspan = "5"|'''Gel'''
|-
|align = "center" bgcolor = "#EAF1DD"|'''Guar/Guar gum'''
|align = "center" bgcolor = "#EAF1DD"|'''Cellulose and its derivatives'''
|align = "center" bgcolor = "#EAF1DD"|'''<nowiki>### </nowiki>'''
|align = "center" bgcolor = "#EAF1DD"|'''<nowiki>### </nowiki>'''
|align = "center" bgcolor = "#EAF1DD"|'''<nowiki>### </nowiki>'''
|-
|align = "center"|Borate crosslinked guar
|align = "center"|Hydroxyethyl cellulose (HEC), Carboxymethyl hydroxyethyl cellulose (CMHEC), Carboxymethyl cellulose (CMC)
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|-
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|-
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|-
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|-
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|align = "center"|
|-
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|align = "center"|
|-
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|align = "center"|
|align = "center"|
|align = "center"|
|-
|}
 
Crosslinked Gel Fluids consisting of Guar and its derivatives such as borate cross-linked guar gel,....[Contd]
 
 
==Viscosifiers==
 
'''Viscosifiers''': Helps in maintaining the viscosity of frac. fluids.
 
{|border="2" cellspacing="0" cellpadding="4" width="80%"
|align = "center" bgcolor = "#EAF1DD" colspan = "3"|'''Viscosifiers'''
|-
|align = "center" bgcolor = "#EAF1DD"|'''Synthetic polymers'''
|align = "center" bgcolor = "#EAF1DD"|'''Polysaccharides'''
|align = "center" bgcolor = "#EAF1DD"|'''<nowiki>### </nowiki>'''
|-
|align = "center"|Polyvinyl polymers, substituted polyvinyl polymers, polyvinyl acetate
|align = "center"|Cellulose ethers, galactomannans
|align = "center"|<nowiki>****</nowiki>
|-
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|-
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|-
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|-
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|align = "center"|
|-
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|align = "center"|
|-
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|align = "center"|
|-
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|align = "center"|
|-
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|align = "center"|
|-
|}
 
Most widely used viscosifiers are polysachharides such as guar based compounds (hydroxypropyl guar (HPG),....[Contd]
 
==Clay stabilizer==
'''Clay stabilizer''': Prevents formation clays from swelling''' '''and includes''' '''compounds like''' '''sodium salicylate''', '''potassium chloride, sodium chloride, ....[Contd]
 
==Surfactant==
'''Surfactant''': Used to increase the viscosity of the fracture fluid
 
{|border="2" cellspacing="0" cellpadding="4" width="80%"
|align = "center" bgcolor = "#EAF1DD" colspan = "5"|'''Surfactant'''
|-
|align = "center" bgcolor = "#EAF1DD"|'''Viscoelastic'''
|align = "center" bgcolor = "#EAF1DD"|'''Cationic/Anionic'''
|align = "center" bgcolor = "#EAF1DD"|'''<nowiki>### </nowiki>'''
|align = "center" bgcolor = "#EAF1DD"|'''<nowiki>### </nowiki>'''
|align = "center" bgcolor = "#EAF1DD"|'''<nowiki>### </nowiki>'''
|-
|align = "center"|Erucylamidopropyl betaine
|align = "center"|Erucylamidopropyl betaine and oleylamidopropyl betaine, oleylamidopropyl betaine
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|-
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|-
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|-
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|-
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|-
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|-
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|align = "center"|
|align = "center"|<nowiki>****</nowiki>
|-
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|align = "center"|
|align = "center"|<nowiki>****</nowiki>
|-
|
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|align = "center"|
|align = "center"|<nowiki>****</nowiki>
|-
|align = "center"|
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|
|align = "center"|<nowiki>****</nowiki>
|-
|align = "center"|
|align = "center"|
|align = "center"|<nowiki>****</nowiki>
|align = "center"|
|align = "center"|<nowiki>****</nowiki>
|-
|align = "center"|
|align = "center"|
|align = "center"|<nowiki>****</nowiki>
|align = "center"|
|align = "center"|<nowiki>****</nowiki>
|-
|align = "center"|
|align = "center"|
|align = "center"|<nowiki>****</nowiki>
|align = "center"|
|align = "center"|<nowiki>****</nowiki>
|-
|align = "center"|
|align = "center"|
|align = "center"|
|align = "center"|
|align = "center"|<nowiki>****</nowiki>
|-
|}
 
Various surfactants used so far have been presented in the table of which viscoelastic and zwitterionic surfactants are mainly used....[Contd]
 
==Iron control==
'''Iron control''': It prevents precipitation of metal oxides.
 
For eg''': '''Citric acid has been widely used by Schlumberger and Halliburton in treatment of formation.
 
==pH adjusting agent==
'''pH adjusting agent''': Maintains the effectiveness of other components, such as crosslinkers.
 
 
{|border="2" cellspacing="0" cellpadding="4" width="80%"
|align = "center" bgcolor = "#EAF1DD" colspan = "7"|'''pH adjusting agent'''
|-
|align = "center" bgcolor = "#EAF1DD"|'''Carbonates'''
|align = "center" bgcolor = "#EAF1DD"|'''Phosphates'''
|align = "center" bgcolor = "#EAF1DD"|'''<nowiki>### </nowiki>'''
|align = "center" bgcolor = "#EAF1DD"|'''<nowiki>### </nowiki>'''
|align = "center" bgcolor = "#EAF1DD"|'''<nowiki>### </nowiki>'''
|align = "center" bgcolor = "#EAF1DD"|'''<nowiki>### </nowiki>'''
|align = "center" bgcolor = "#EAF1DD"|'''<nowiki>### </nowiki>'''
|-
|align = "center"|Sodium sesquicarbonate, sodium carbonate
|align = "center"|Sodium phosphate, sodium hydrogen phosphate
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|-
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|-
|align = "center"|<nowiki>****</nowiki>
|align = "center"|
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|-
|align = "center"|
|align = "center"|
|align = "center"|
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|-
|align = "center"|
|align = "center"|
|align = "center"|
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|-
|align = "center"|
|align = "center"|
|align = "center"|
|align = "center"|
|align = "center"|<nowiki>****</nowiki>
|align = "center"|
|align = "center"|<nowiki>****</nowiki>
|-
|align = "center"|
|align = "center"|
|align = "center"|
|align = "center"|
|align = "center"|<nowiki>****</nowiki>
|align = "center"|
|align = "center"|
|-
|align = "center"|
|align = "center"|
|align = "center"|
|align = "center"|
|align = "center"|<nowiki>****</nowiki>
|align = "center"|
|align = "center"|
|-
|align = "center"|
|align = "center"|
|align = "center"|
|align = "center"|
|align = "center"|<nowiki>****</nowiki>
|align = "center"|
|align = "center"|
|-
|}
 
'''pH control agents''' includes Carbonates(sodium carbonate, potassium carbonate), Phosphates(sodium or potassium phosphate, sodium or potassium hydrogen phosphate, sodium or potassium dihydrogen phosphate),....[Contd]
 
==Scale inhibitor==
'''Scale inhibitor''': It prevents scale deposits in the pipe. It includes compounds like methylene phosphonic acid, 1-hydroxy ethylidene-1,1-diphosphonic acid; 2-hydroxyphosphonocarboxylic acid;....[Contd]
 
 
==Fibrous material==
'''Fibrous material''': Fibres are used to prevent proppant flowback and also enhance proppant transport. Polylactic acid fibers and polyglycolic acid fibres are mainly used by Schlumberger.
 
 
{|border="2" cellspacing="0" cellpadding="4" width="80%"
|align = "center" bgcolor = "#EAF1DD" colspan = "4"|'''Fibrous material'''
|-
|align = "center" bgcolor = "#EAF1DD" colspan = "3"|'''Organic'''
|align = "center" bgcolor = "#EAF1DD" rowspan = "2"|'''<nowiki>### </nowiki>'''
|-
|align = "center" bgcolor = "#EAF1DD"|'''Lactide/polylactic acid'''
|align = "center" bgcolor = "#EAF1DD"|'''Glycolide/polyglycolic acid'''
|align = "center" bgcolor = "#EAF1DD"|'''<nowiki>### </nowiki>'''
|-
|align = "center"|Polymer of monomer- polymers and copolymers of lactide
|align = "center"|Polymer of monomer- polymers and copolymers of glycolide
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|-
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|
|-
|align = "center"|<nowiki>****</nowiki>
|align = "center"|
|align = "center"|<nowiki>****</nowiki>
|align = "center"|
|-
|align = "center"|<nowiki>****</nowiki>
|align = "center"|
|align = "center"|<nowiki>****</nowiki>
|align = "center"|
|-
|}
 
==Solvents==
'''Solvents'''
 
{|border="2" cellspacing="0" cellpadding="4" width="80%"
|align = "center" bgcolor = "#EAF1DD" colspan = "2"|'''Solvent'''
|-
|align = "center" bgcolor = "#EAF1DD"|'''Alcohol based'''
|align = "center" bgcolor = "#EAF1DD"|'''Other organic solvents'''
|-
|align = "center"|Polyol or polyol ether, polyglycols
|align = "center"|Carbon dioxide, nitrogen,toluene, diesel, heptane, octane, or condensate, methane- ("ISANE" ,ISOPAR), cetone or 2-butanone
|-
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|-
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|-
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|-
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|-
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|-
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|-
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|-
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|-
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|-
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|-
|}
 
Mostly used solvents are polyol or polyol ether based compounds (2-butoxyethanol, ethylene glycol, propylene glycol,....[Contd]
 
==Salts==
'''Salts''': NaCO<sub>3</sub>, Graded calcium carbonate, Potassium Chloride, Calcium chloride, Magnesium chloride,....[Contd]
 
 
==Emulsions==
'''Emulsions''': Various patents have talked about emulsion system based fracturing fluid (Emulsified carbon dioxide fracture fluids)<sub> </sub>as emulsion enhances the ability of the compositions to remove any blocks of fluids interlocked with gas in formations after the desired treatment is achieved. This technique has been majorly adopted by Schlumberger.
 
===Graphical representation of Additives used for corresponding Fracturing fluids===
 
[[Image:Additives used alongwith Fracturi fluids.jpg|left|500px]]
[[Image:Additives used alongwith Fractu fluids2.jpg|center|500px]]
 
 
==Miscellaneous compounds==
 
Table below list out the miscellaneous compounds used for well treatments with their role based on the conditions prevailing in the reservoir.
 
{|border="2" cellspacing="0" cellpadding="4" width="80%"
|align = "center" bgcolor = "#C2D69A"|'''Additives'''
|align = "center" bgcolor = "#C2D69A"|'''Role'''
|align = "center" bgcolor = "#C2D69A"|'''Chemical compounds'''
|-
|align = "center" bgcolor = "#EAF1DD"|'''Embrittlement modification agent'''
|align = "center"|Embrittled fracture face to prevent formation intrusion
|align = "center"|An amine; lithium hydroxide; sodium hydroxide; potassium hydroxide; rubidium hydroxide; calcium hydroxide; strontium hydroxide; barium hydroxide; sodium carbonate; lime
|-
|align = "center" bgcolor = "#EAF1DD"|'''Plasticity modification fluids'''
|align = "center"|Prevent the extrusion mechanism (e.g., through embrittling the rock) and proppant embedment or fracture closure.
|align = "center"|Hydroxy aluminum and zirconium oxychloride
|-
|align = "center" bgcolor = "#EAF1DD"|'''<nowiki>### </nowiki>'''
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|-
|align = "center" bgcolor = "#EAF1DD"|'''<nowiki>### </nowiki>'''
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|-
|align = "center" bgcolor = "#EAF1DD"|'''<nowiki>### </nowiki>'''
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|-
|align = "center" bgcolor = "#EAF1DD"|'''<nowiki>### </nowiki>'''
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|-
|align = "center" bgcolor = "#EAF1DD"|'''<nowiki>### </nowiki>'''
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|-
|align = "center" bgcolor = "#EAF1DD"|'''<nowiki>### </nowiki>'''
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|-
|align = "center" bgcolor = "#EAF1DD"|'''<nowiki>### </nowiki>'''
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|-
|align = "center" bgcolor = "#EAF1DD"|'''<nowiki>### </nowiki>'''
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|-
|align = "center" bgcolor = "#EAF1DD"|'''<nowiki>### </nowiki>'''
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|-
|align = "center" bgcolor = "#EAF1DD"|'''<nowiki>### </nowiki>'''
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|-
|align = "center" bgcolor = "#EAF1DD"|'''<nowiki>### </nowiki>'''
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|-
|align = "center" bgcolor = "#EAF1DD"|'''<nowiki>### </nowiki>'''
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|-
|align = "center" bgcolor = "#EAF1DD"|'''<nowiki>### </nowiki>'''
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|-
|align = "center" bgcolor = "#EAF1DD"|'''<nowiki>### </nowiki>'''
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|-
|align = "center" bgcolor = "#EAF1DD"|'''<nowiki>### </nowiki>'''
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|-
|align = "center" bgcolor = "#EAF1DD"|'''<nowiki>### </nowiki>'''
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|-
|align = "center" bgcolor = "#EAF1DD"|'''<nowiki>### </nowiki>'''
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|-
|align = "center" bgcolor = "#EAF1DD"|'''<nowiki>### </nowiki>'''
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|-
|}
 
==Trade names additives used for fracturing fluids==
 
Various compounds with their Trade names and roles have been tabulated below.
 
{|border="2" cellspacing="0" cellpadding="4" width="80%"
|align = "center" bgcolor = "#C2D69A"|'''Trade names'''
|align = "center" bgcolor = "#C2D69A"|'''Generic name'''
|align = "center" bgcolor = "#C2D69A"|'''Role'''
|-
|align = "center"|Daxad.RTM. 31
|align = "center"|Maleic anhydride copolymer
|align = "center" rowspan = "3"|Polymeric drag reducing units
|-
|align = "center"|Daxad.RTM. 32
|align = "center"|Ammonium methacrylate polymers and copolymers
|-
|align = "center"|<nowiki>### </nowiki>
|align = "center"|<nowiki>****</nowiki>
|-
|align = "center"|<nowiki>### </nowiki>
|align = "center"|<nowiki>****</nowiki>
|align = "center" rowspan = "2"|<nowiki>****</nowiki>
|-
|align = "center"|<nowiki>### </nowiki>
|align = "center"|<nowiki>****</nowiki>
|-
|align = "center"|<nowiki>### </nowiki>
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|-
|align = "center"|<nowiki>### </nowiki>
|align = "center"|
|align = "center"|<nowiki>****</nowiki>
|-
|align = "center"|<nowiki>### </nowiki>
|align = "center"|
|align = "center"|<nowiki>****</nowiki>
|-
|align = "center"|<nowiki>### </nowiki>
|align = "center"|
|align = "center"|<nowiki>****</nowiki>
|-
|align = "center"|<nowiki>### </nowiki>
|align = "center"|
|align = "center"|<nowiki>****</nowiki>
|-
|align = "center"|<nowiki>### </nowiki>
|align = "center"|
|align = "center"|<nowiki>****</nowiki>
|-
|align = "center"|<nowiki>### </nowiki>
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|-
|align = "center"|<nowiki>### </nowiki>
|align = "center"|
|align = "center"|<nowiki>****</nowiki>
|-
|align = "center"|<nowiki>### </nowiki>
|align = "center"|<nowiki>****</nowiki>
|align = "center" rowspan = "2"|<nowiki>****</nowiki>
|-
|align = "center"|<nowiki>### </nowiki>
|align = "center"|<nowiki>****</nowiki>
|-
|align = "center"|<nowiki>### </nowiki>
|align = "center"|<nowiki>****</nowiki>
|align = "center" rowspan = "2"|<nowiki>****</nowiki>
|-
|align = "center"|<nowiki>### </nowiki>
|align = "center"|<nowiki>****</nowiki>
|-
|align = "center"|<nowiki>### </nowiki>
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|-
|align = "center" rowspan = "2"|<nowiki>### </nowiki>
|align = "center" rowspan = "2"|<nowiki>****</nowiki>
|align = "center" rowspan = "4"|<nowiki>****</nowiki>
|-
|
|-
|align = "center"|<nowiki>### </nowiki>
|align = "center"|<nowiki>****</nowiki>
|-
|align = "center"|<nowiki>### </nowiki>
|align = "center"|<nowiki>****</nowiki>
|-
|align = "center"|<nowiki>### </nowiki>
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|-
|align = "center"|<nowiki>### </nowiki>
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|-
|align = "center"|<nowiki>### </nowiki>
|align = "center"|<nowiki>****</nowiki>
|align = "center" rowspan = "4"|<nowiki>****</nowiki>
|-
|align = "center"|<nowiki>### </nowiki>
|align = "center"|<nowiki>****</nowiki>
|-
|align = "center"|<nowiki>### </nowiki>
|align = "center"|<nowiki>****</nowiki>
|-
|align = "center"|<nowiki>### </nowiki>
|align = "center"|<nowiki>****</nowiki>
|-
|align = "center"|<nowiki>### </nowiki>
|align = "center"|
|align = "center"|<nowiki>****</nowiki>
|-
|align = "center"|<nowiki>### </nowiki>
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|-
|align = "center"|<nowiki>### </nowiki>
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|-
|align = "center"|<nowiki>### </nowiki>
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|-
|align = "center"|<nowiki>### </nowiki>
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|-
|align = "center"|<nowiki>### </nowiki>
|align = "center" rowspan = "2"|<nowiki>****</nowiki>
|align = "center" rowspan = "2"|<nowiki>****</nowiki>
|-
|align = "center"|<nowiki>### </nowiki>
|-
|align = "center"|<nowiki>### </nowiki>
|align = "center"|<nowiki>****</nowiki>
|align = "center" rowspan = "2"|<nowiki>****</nowiki>
|-
|align = "center"|<nowiki>### </nowiki>
|align = "center"|<nowiki>****</nowiki>
|-
|align = "center"|<nowiki>### </nowiki>
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|-
|align = "center"|<nowiki>### </nowiki>
|align = "center"|
|align = "center"|<nowiki>****</nowiki>
|-
|align = "center"|<nowiki>### </nowiki>
|align = "center"|<nowiki>****</nowiki>
|align = "center" rowspan = "4"|<nowiki>****</nowiki>
|-
|align = "center"|<nowiki>### </nowiki>
|align = "center"|<nowiki>****</nowiki>
|-
|align = "center"|<nowiki>### </nowiki>
|align = "center"|<nowiki>****</nowiki>
|-
|align = "center"|<nowiki>### </nowiki>
|align = "center"|<nowiki>****</nowiki>
|-
|align = "center"|<nowiki>### </nowiki>
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|-
|align = "center"|<nowiki>### </nowiki>
|align = "center"|
|align = "center"|<nowiki>****</nowiki>
|-
|align = "center"|<nowiki>### </nowiki>
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|-
|align = "center"|<nowiki>### </nowiki>
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|-
|align = "center"|<nowiki>### </nowiki>
|align = "center"|<nowiki>****</nowiki>
|align = "center" rowspan = "2"|<nowiki>****</nowiki>
|-
|align = "center"|<nowiki>### </nowiki>
|align = "center"|<nowiki>****</nowiki>
|-
|}
 
=Heat Treatment=
==Heat treatment of wells==
 
Few geological formations contain an organic matter known as "'''kerogen'''". When kerogen is imbedded in rock formations, the mixture is referred to as oil shale. In the United States, oil shale is most notably found in Wyoming, Colorado, and Utah. Decomposition of kerogen leads to the formation of hydrocarbons wherein the decomposition is temperature dependent. Temperatures of higher than 270°C are required for their conversion. Many attempts have been made to extract oil from oil shale. Conventional process and method have been made for extraction of hydrocarbon from kerogen rocks formation. Near surface oil mining has been widely conducted in this formation for recovery of hydrocarbon fluids in earlier days. But this technique has proved to be uneconomical and also shows environmental constraints due to the disposal of spent shale.
 
===Graphical representation of assignee's holding patents of Thermal fracturing===
[[Image:Assignee thermal.jpg|center|500px]]
 
===ExxonMobil===
 
[http://appft1.uspto.gov/netacgi/nph-Parser?Sect1=PTO1&Sect2=HITOFF&d=PG01&p=1&u=%2Fnetahtml%2FPTO%2Fsrchnum.html&r=1&f=G&l=50&s1=%2220080271885%22.PGNR.&OS=DN/20080271885&RS=DN/20080271885 US20080271885A1] titled "'''Granular electrical connections for in situ formation heating'''" by ExxonMobil. Provide method for heating a subsurface formation by using an electrically conductive granular material. It also includes passage in the subsurface between a wellbore located within the subsurface formation for injection of electrically conductive granular material. This technique is particularly advantageous in oil shale development areas initially having very limited or effectively no fluid permeability....[Contd]
 
The various means for providing heat is tabulated below.
{|border="2" cellspacing="0" cellpadding="4" width="80%"
|align = "center" bgcolor = "#9BBB59"|'''Electric means'''
|align = "center" bgcolor = "#9BBB59"|'''Thermal-energy carrier fluid'''
|align = "center" bgcolor = "#9BBB59"|'''Electrically conductive material'''
|-
|align = "center" rowspan = "2"|Radio-frequency (RF) electrical energy
|align = "center"|Hot fluids- methane gas or naphtha
|align = "center" rowspan = "2"|Granular metal, metal coated particles, coke, graphite, metal coated particles, coke, graphite, silica, quartz, cement chips, sandstone
|-
|align = "center"|Water, Steam
|-
|align = "center"|Heater
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|-
|align = "center"|<nowiki>### </nowiki>
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|-
|align = "center"|<nowiki>### </nowiki>
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|-
|align = "center"|<nowiki>### </nowiki>
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|-
|align = "center"|<nowiki>### </nowiki>
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|-
|}
 
 
In situ heating of the subsurface was also accomplished by combustible fuel, burning a fuel, cooling fluid, surface burner, flameless distributed combustors, flameless distributed combustor, natural distributed combustor.
 
===Summary of Heating treatment===
'''ExxonMobil '''is working in recovering hydrocarbon through heat treatment of shale formation comprising kerogen or organic-rich rock formation since 1995 till today, by using conductive granular material,....[Contd]
 
=Challenges in Tight Gas=
 
We have analyzed patents and scientific articles and found different challenges that are faced in the process of recovery of tight gas. We have used all the relevant records obtained from the search conducted to list out different problems and challenges. All the similar challenges are taken together and analyzed for different solutions. The main heads under which these challenges lie are:
 
1. Water blocking/damage problem
 
2. Fracturing Fluid
 
3. Proppant
 
4. Geology problem
 
5. Environmental impact
 
6. Fracturing
 
7. Drilling
 
8. Fracturing and stimulation in high temperature and high pressure formations
 
==Water blocking/damage problem==
 
There are several patents which talks about problem associated with presence of water in these tight reservoirs.
 
{|border="2" cellspacing="0" cellpadding="4" width="80%"
|align = "center" bgcolor = "#9BBB59" colspan = "4"|'''Water blocking/Damage'''
|-
|align = "center" bgcolor = "#9BBB59"|'''S.No'''
|align = "center" bgcolor = "#9BBB59"|'''Assignee'''
|align = "center" bgcolor = "#9BBB59"|'''Patent'''
|align = "center" bgcolor = "#9BBB59"|'''Solution'''
|-
|align = "center" bgcolor = "#9BBB59" rowspan = "3"|'''1'''
|align = "center" rowspan = "3"|'''3M/Univ of Texas'''
|align = "center"|<font color="#0000FF"><u>[http://appft1.uspto.gov/netacgi/nph-Parser?Sect1=PTO1&Sect2=HITOFF&d=PG01&p=1&u=%2Fnetahtml%2FPTO%2Fsrchnum.html&r=1&f=G&l=50&s1=%2220100224361%22.PGNR.&OS=DN/20100224361&RS=DN/20100224361 US20100224361A1]</u></font>
|Treatment fluid comprising wettability modifier and solvents.
|-
|align = "center"|<font color="#0000FF"><u>[http://appft1.uspto.gov/netacgi/nph-Parser?Sect1=PTO1&Sect2=HITOFF&d=PG01&p=1&u=%2Fnetahtml%2FPTO%2Fsrchnum.html&r=1&f=G&l=50&s1=%2220100167964%22.PGNR.&OS=DN/20100167964&RS=DN/20100167964 US20100167964A1]</u></font>
|Stepwise treatment with the first and second wettability modifers.
|-
|align = "center"|<font color="#0000FF"><u>[http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO1&Sect2=HITOFF&d=PALL&p=1&u=%2Fnetahtml%2FPTO%2Fsrchnum.htm&r=1&f=G&l=50&s1=8043998.PN.&OS=PN/8043998&RS=PN/8043998 US8043998B2]</u></font>
|Treatment fluids comprising of solvent and a nonionic fluorinated polymeric surfactant.
|-
|align = "center" bgcolor = "#9BBB59"|'''2'''
|align = "center"|'''Schlumberger'''
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|-
|align = "center" bgcolor = "#9BBB59"|'''3'''
|align = "center"|<nowiki>### </nowiki>
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|-
|align = "center" bgcolor = "#9BBB59"|'''4'''
|align = "center"|<nowiki>### </nowiki>
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|-
|align = "center" bgcolor = "#9BBB59"|'''5'''
|align = "center"|<nowiki>### </nowiki>
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|-
|}
 
These sections now concentrate on the work done by the companies or institutes.<br/>
===3M/Univ Of Texas===
 
[http://appft1.uspto.gov/netacgi/nph-Parser?Sect1=PTO1&Sect2=HITOFF&d=PG01&p=1&u=%2Fnetahtml%2FPTO%2Fsrchnum.html&r=1&f=G&l=50&s1=%2220100224361%22.PGNR.&OS=DN/20100224361&RS=DN/20100224361 US20100224361A1] titled "Compositions and Methods for Treating a Water Blocked Well" by 3M/Univ Of Texas. Fracturing of hydrocarbon-bearing subterranean formation containing non-connate water often leads to well damaged and decreases in the production after a time period. The major source of water in the well can be from natural (water from the adjacent water bodies) or manmade artificial (drilling mud and other water-based drill-in-fluids and fracturing fluids) sources. Treatment of hydrocarbon-bearing subterranean formation containing non-connate water by treatment fluid comprises of '''wettability modifier and solvents'''....[Contd]
 
[http://appft1.uspto.gov/netacgi/nph-Parser?Sect1=PTO1&Sect2=HITOFF&d=PG01&p=1&u=%2Fnetahtml%2FPTO%2Fsrchnum.html&r=1&f=G&l=50&s1=%2220100167964%22.PGNR.&OS=DN/20100167964&RS=DN/20100167964 US20100167964A1] titled "Compositions and Methods for Treating a Water Blocked Well" by 3M/Univ Of Texas. Fracturing of hydrocarbon-bearing subterranean formation containing non-connate water often leads to well damaged and decreases in the production after a time period....[Contd]
 
<font color="#0000FF"><u>[http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO1&Sect2=HITOFF&d=PALL&p=1&u=%2Fnetahtml%2FPTO%2Fsrchnum.htm&r=1&f=G&l=50&s1=8043998.PN.&OS=PN/8043998&RS=PN/8043998 US8043998B2] </u></font>titled "Method for treating a fractured formation with a non-ionic fluorinated polymeric surfactant" by 3M/Univ Of Texas. Though clean up of water for their removal from the reservoir helps in increasing the hydrocarbon production, need exist to increase the conductivity of the propped fracture, when brine or condensate is used in the fracturing treatments....[Contd]
 
===Information from the Article===
 
Wheeler S. R et. al., 2010 studied on "A Study of High-Quality Foamed Fracturing Fluid Properties" of BJ Services Company. High rate slickwater stimulation uses a large quantity of water which leads to reservoir damage. Objective is to examine the rheological properties of high quality foamed fracturing fluids and compare it with other fracturing techniques....[Contd]
 
===Summary of Water damage===
 
Water damage is a serious problem which if not overcome, renders a productive well unproductive. Schlumberger and 3M/Univ Of Texas are the major companies working in this area as seen from the above graphs....[Contd]
 
==Fracturing Fluid==
{|border="2" cellspacing="0" cellpadding="4" width="80%"
|align = "center" bgcolor = "#9BBB59" colspan = "4"|'''Fracturing Fluid'''
|-
|align = "center" bgcolor = "#9BBB59"|'''S.No'''
|align = "center" bgcolor = "#9BBB59"|'''Assignee'''
|align = "center" bgcolor = "#9BBB59"|'''Patent'''
|align = "center" bgcolor = "#9BBB59"|'''Solution'''
|-
|align = "center" bgcolor = "#9BBB59" rowspan = "3"|1
|align = "center" rowspan = "3"|'''Schlumberger'''
|align = "center"|<font color="#0000FF"><u>[http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO1&Sect2=HITOFF&d=PALL&p=1&u=%2Fnetahtml%2FPTO%2Fsrchnum.htm&r=1&f=G&l=50&s1=6929069.PN.&OS=PN/6929069&RS=PN/6929069 US6929069B2]</u></font>
|Aqueous based fracturing fluid is used for reducing the leak off of fracturing fluid
|-
|align = "center"|<font color="#0000FF"><u>[http://appft1.uspto.gov/netacgi/nph-Parser?Sect1=PTO1&Sect2=HITOFF&d=PG01&p=1&u=%2Fnetahtml%2FPTO%2Fsrchnum.html&r=1&f=G&l=50&s1=%2220090318313%22.PGNR.&OS=DN/20090318313&RS=DN/20090318313 US20090318313A1]</u></font>
|Slickwater treatment fluid by polyacrylamide and stabilized peroxide breaker fluid.
|-
|align = "center"|<font color="#0000FF"><u>[http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO1&Sect2=HITOFF&d=PALL&p=1&u=%2Fnetahtml%2FPTO%2Fsrchnum.htm&r=1&f=G&l=50&s1=8066073.PN.&OS=PN/8066073&RS=PN/8066073 US8066073B2]</u></font>
|Stabilized aqueous dispersions of water inert polymers in treatment fluids
|-
|align = "center" bgcolor = "#9BBB59"|2
|align = "center"|'''Halliburton'''
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|-
|align = "center" bgcolor = "#9BBB59"|3
|align = "center"|'''<nowiki>### </nowiki>'''
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|-
|align = "center" bgcolor = "#9BBB59"|4
|align = "center"|'''<nowiki>### </nowiki>'''
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|-
|align = "center" bgcolor = "#9BBB59"|5
|align = "center"|'''<nowiki>### </nowiki>'''
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|-
|}
 
These sections now concentrate on the work done by the companies or institutes.
===Schlumberger===
 
[http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO1&Sect2=HITOFF&d=PALL&p=1&u=%2Fnetahtml%2FPTO%2Fsrchnum.htm&r=1&f=G&l=50&s1=6929069.PN.&OS=PN/6929069&RS=PN/6929069 US6929069B2] titled "Fracturing fluid and method of use" by Schlumberger. Need of improved fracturing fluids which reduce the leak off of fracturing fluid and aid in clean up of the well. '''Aqueous based fracturing fluid''' consist blend of an amine oxide having aliphatic and alkyl or alkenyl group and viscosifying amount of a solvatable polysaccharide....[Contd]
 
 
===Information from the Articles===
 
King, S. R., 1983 of American Fracmaster Inc studied the effects of residual fluid in the stimulation of low permeability reservoirs liquid. Carbon dioxide (CO<sub>2</sub>) as a fracturing fluid was developed to combat the problems of fluid imbibitions. Advantage of the CO<sub>2</sub> is it can easily returned to the surface under controlled rates as a gas, thus more rapid cleanup can be performed easily....[Contd]
 
 
===Summary of Fracturing Fluid===
 
Fracturing fluids faces problem due its viscous nature, leaking off ability and getting trapped in the area surrounding the fractures. Various companies have worked on different categories to prevent damage due to fracturing fluid.'''Schlumberger''' is the first company to have utilized delayed and non delayed breakers in the viscous fracturing fluids in 1992, they also used polyacrylamide and stabilized peroxide breaker fluid as an additive....[Contd]
 
==Proppant==
{|border="2" cellspacing="0" cellpadding="4" width="80%"
|align = "center" bgcolor = "#9BBB59" colspan = "4"|'''Proppant problem'''
|-
|align = "center" bgcolor = "#9BBB59"|'''S.No'''
|align = "center" bgcolor = "#9BBB59"|'''Assignee'''
|align = "center" bgcolor = "#9BBB59"|'''Patent'''
|align = "center" bgcolor = "#9BBB59"|'''Solution'''
|-
|align = "center" bgcolor = "#9BBB59" rowspan = "2"|'''1'''
|align = "center" rowspan = "2"|'''Schlumberger'''
|align = "center"|<font color="#0000FF"><u>[http://www.wipo.int/pctdb/en/wo.jsp?WO=2011081550 WO2011081550A1]</u></font>
|Inexpensive proppant materials for hydraulic fracturing of tight gas reservoir having crushable properties.
|-
|align = "center"|<font color="#0000FF"><u>WO2011145965A1</u></font>
|Providing proppant slugs in fracturing treatments
|-
|align = "center" bgcolor = "#9BBB59"|'''2'''
|align = "center"|'''Baker Hughes'''
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|-
|align = "center" bgcolor = "#9BBB59"|'''3'''
|align = "center"|'''<nowiki>### </nowiki>'''
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|-
|align = "center" bgcolor = "#9BBB59"|'''4'''
|align = "center"|'''<nowiki>### </nowiki>'''
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|-
|}
 
These sections now concentrate on the work done by the companies or institutes.
===Schlumberger===
 
[http://www.wipo.int/pctdb/en/wo.jsp?WO=2011081550 WO2011081550A1] titled "Hydraulic fracturing system" by Schlumberger. Need of an inexpensive proppant materials for hydraulic fracturing of tight gas reservoir having crushable properties. '''Hydraulic fracturing utilizing crushable particulates''', which provide sufficient and cost effective fracture conductivity dependent on closure stress, has been presented....[Contd]
 
 
===Information from the Articles===
 
Ingram, S.R., et al 2007 of Halliburton, XTO Energy studied the production loss due to proppant flowback through Coiled-Tubing Intervention.A combination of coiled tubing, pressure pulsing tool, and low-viscosity consolidating agent (liquid curable resin) provides a reliable and economical remedial treatment to overcome proppant flowback problems, without mechanical isolation, to eliminate subsequent cleanouts and improve the operator<nowiki>’</nowiki>s return on investment by saving costs....[Contd]
 
===Summary of Proppant challenges===
 
Proppant placement being a serious problem many companies has explored this area which includes Baker Hughes, etc. in 2011. Schlumberger performed Hydraulic fracturing utilizing crushable particulates; heterogeneous proppant placement was done by metering proppant slurry through control valves and then placing it into the fracture in 2011....[Contd]
 
==Geology==
{|border="2" cellspacing="0" cellpadding="4" width="80%"
|align = "center" bgcolor = "#9BBB59" colspan = "4"|'''Geology problem'''
|-
|align = "center" bgcolor = "#9BBB59"|'''S.No'''
|align = "center" bgcolor = "#9BBB59"|'''Assignee'''
|align = "center" bgcolor = "#9BBB59"|'''Patent'''
|align = "center" bgcolor = "#9BBB59"|'''Solution'''
|-
|align = "center" bgcolor = "#9BBB59" rowspan = "3"|1
|align = "center" rowspan = "3"|'''Halliburton'''
|align = "center"|<font color="#0000FF"><u>[http://appft1.uspto.gov/netacgi/nph-Parser?Sect1=PTO1&Sect2=HITOFF&d=PG01&p=1&u=%2Fnetahtml%2FPTO%2Fsrchnum.html&r=1&f=G&l=50&s1=%2220110209868%22.PGNR.&OS=DN/20110209868&RS=DN/20110209868 US20110209868A1]</u></font>
|align = "center"|Fracturing of stress altered formation using signaling subsystem communicably coupled with injection tools installed in the well bore.
|-
|align = "center"|<font color="#0000FF"><u>[http://appft1.uspto.gov/netacgi/nph-Parser?Sect1=PTO1&Sect2=HITOFF&d=PG01&p=1&u=%2Fnetahtml%2FPTO%2Fsrchnum.html&r=1&f=G&l=50&s1=%2220110120713%22.PGNR.&OS=DN/20110120713&RS=DN/20110120713 US20110120713A1]</u></font>
|align = "center"|Increasing fracture complexity in ultra-low permeable subterranean formation using degradable particulate.
|-
|align = "center"|<font color="#0000FF"><u>[http://appft1.uspto.gov/netacgi/nph-Parser?Sect1=PTO1&Sect2=HITOFF&d=PG01&p=1&u=%2Fnetahtml%2FPTO%2Fsrchnum.html&r=1&f=G&l=50&s1=%2220110136703%22.PGNR.&OS=DN/20110136703&RS=DN/20110136703 US20110136703A1]</u></font>
|align = "center"|CO<sub>2</sub> fluids for stimulating liquid-sensitive subterranean formations
|-
|align = "center" bgcolor = "#9BBB59"|2
|align = "center"|####
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|-
|align = "center" bgcolor = "#9BBB59"|3
|align = "center"|####
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|-
|align = "center" bgcolor = "#9BBB59"|4
|align = "center"|####
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|-
|}
 
===Halliburton===
 
[http://appft1.uspto.gov/netacgi/nph-Parser?Sect1=PTO1&Sect2=HITOFF&d=PG01&p=1&u=%2Fnetahtml%2FPTO%2Fsrchnum.html&r=1&f=G&l=50&s1=%2220110209868%22.PGNR.&OS=DN/20110209868&RS=DN/20110209868 US20110209868A1] titled "Fracturing a stress-altered subterranean formation" by Halliburton. Fracturing of a stress- altered subterranean formation is difficult to perform. Fracturing of stress altered formation using signaling subsystem communicably coupled with injection tools installed in the well bore....[Contd]
 
[http://appft1.uspto.gov/netacgi/nph-Parser?Sect1=PTO1&Sect2=HITOFF&d=PG01&p=1&u=%2Fnetahtml%2FPTO%2Fsrchnum.html&r=1&f=G&l=50&s1=%2220110120713%22.PGNR.&OS=DN/20110120713&RS=DN/20110120713 US20110120713A1] titled "Increasing fracture complexity in ultra-low permeable subterranean formation using degradable particulate" by Halliburton. Need for increasing the fracture complexity of the ultra low permeability for recovery of hydrocarbon. It include a method for pumping one or more fracturing fluids into a far-field region of the treatment zone....[Contd]
 
[http://appft1.uspto.gov/netacgi/nph-Parser?Sect1=PTO1&Sect2=HITOFF&d=PG01&p=1&u=%2Fnetahtml%2FPTO%2Fsrchnum.html&r=1&f=G&l=50&s1=%2220110136703%22.PGNR.&OS=DN/20110136703&RS=DN/20110136703 US20110136703A1] titled "Compositions for stimulating liquid-sensitive subterranean formations" by Halliburton. Stimulation of liquid sensitive formation often shows the migration of fines particle and rock slippage which can plug any pathways of hydrocarbon productivity and thus reduced the permeability of the hydraulically fractured zone.
 
===Information from the Articles===
 
Zillur R. et. al., 2010 studied on "Selection of Completion Strategy for Sand Control and Optimal Production Rate - Field Examples from Saudi Arabia<nowiki>’</nowiki>s "Unayzah Sandstone Reservoir" of Saudi Aramco. Completing wells in high sanding environments raises major risks that are not faced in more competent formations....[Contd]
 
===Summary of Geology damage===
 
Different geology challenges are there in tight gas reservoir such as stress altered, ultra low permeability, diatomaceous reservoir and liquid-sensitive subterranean formations. Halliburton has worked on signal subsystem, slickwater and CO<sub>2</sub> fracturing to overcome these challenges. ExxonMobil is using acid fracturing and steam for hydrocarbon recovery. Similarly Chevron is also using cyclic steaming for hydrocarbon recovery from diatomite formations.
 
==Environmental impact==
{|border="2" cellspacing="0" cellpadding="4" width="80%"
|align = "center" bgcolor = "#9BBB59" colspan = "4"|'''Environmental Impact'''
|-
|align = "center" bgcolor = "#9BBB59"|'''S.No'''
|align = "center" bgcolor = "#9BBB59"|'''Assignee'''
|align = "center" bgcolor = "#9BBB59"|'''Patent'''
|align = "center" bgcolor = "#9BBB59"|'''Solution'''
|-
|align = "center"|'''1'''
|align = "center"|'''Baker Hughes'''
|align = "center"|<font color="#0000FF"><u>[http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO1&Sect2=HITOFF&d=PALL&p=1&u=%2Fnetahtml%2FPTO%2Fsrchnum.htm&r=1&f=G&l=50&s1=5424285.PN.&OS=PN/5424285&RS=PN/5424285 US5424285A]</u></font>
|align = "center"|Reducing deleterious environmental impact of fracturing fluid by using foam fracturing fluid
|-
|}
 
 
===Baker Hughes===
 
[http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO1&Sect2=HITOFF&d=PALL&p=1&u=%2Fnetahtml%2FPTO%2Fsrchnum.htm&r=1&f=G&l=50&s1=5424285.PN.&OS=PN/5424285&RS=PN/5424285 US5424285A] titled "Method for reducing deleterious environmental impact of subterranean fracturing processes" by Baker Hughes. Fracturing fluid generally shows deleterious environmental impact such as
 
-Fracturing fluid containing carbon dioxide shows contamination of well products, this cannot be easily removed from the well products. And for removal of CO<sub>2</sub> flaring of the well products was performed which releases combustion products, and other gases from incomplete combustion which had a green house impact on environment....[Contd]
 
==Fracturing==
 
===Hydraulic Fracturing===
 
{|border="2" cellspacing="0" cellpadding="4" width="80%"
|align = "center" bgcolor = "#9BBB59" colspan = "4"|'''Hydraulic Fracturing'''
|-
|align = "center" bgcolor = "#9BBB59"|'''S.No'''
|align = "center" bgcolor = "#9BBB59"|'''Assignee'''
|align = "center" bgcolor = "#9BBB59"|'''Patent'''
|align = "center" bgcolor = "#9BBB59"|'''Solution'''
|-
|align = "center" bgcolor = "#9BBB59" rowspan = "2"|'''1'''
|align = "center" rowspan = "2"|'''ExxonMobil'''
|align = "center"|<font color="#0000FF"><u>[http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO1&Sect2=HITOFF&d=PALL&p=1&u=%2Fnetahtml%2FPTO%2Fsrchnum.htm&r=1&f=G&l=50&s1=5890536.PN.&OS=PN/5890536&RS=PN/5890536 US5890536A]</u></font>
|align = "center"|Multi stage fracturing method is used for overcome the challenges of massive hydrauli fracturing(MHF).
|-
|align = "center"|<font color="#0000FF"><u>[http://appft1.uspto.gov/netacgi/nph-Parser?Sect1=PTO1&Sect2=HITOFF&d=PG01&p=1&u=%2Fnetahtml%2FPTO%2Fsrchnum.html&r=1&f=G&l=50&s1=%2220110272153%22.PGNR.&OS=DN/20110272153&RS=DN/20110272153 US20110272153A1]</u></font>
|align = "center"|Horizontal wellbores to facilitate vertical movement of flow able materials
|-
|align = "center" bgcolor = "#9BBB59"|'''2'''
|align = "center"|'''Schlumberger'''
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|-
|align = "center" bgcolor = "#9BBB59"|'''3'''
|align = "center"|'''<nowiki>### </nowiki>'''
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|-
|align = "center" bgcolor = "#9BBB59"|'''4'''
|align = "center"|'''<nowiki>### </nowiki>'''
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|-
|}
 
These sections now concentrate on the work done by the companies or institutes.
 
====ExxonMobil====
 
[http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO1&Sect2=HITOFF&d=PALL&p=1&u=%2Fnetahtml%2FPTO%2Fsrchnum.htm&r=1&f=G&l=50&s1=5890536.PN.&OS=PN/5890536&RS=PN/5890536 US5890536A] titled "Method for stimulation of lenticular natural gas formations" by ExxonMobil. Need exists of a well stimulation method for substantially enhancing production from reservoirs characterized by tight gas, lenticular deposits such that they become commercially exploitable gas fields as,
-Conventional Massive Hydraulic Fracturing technique applied for lenticular sand, tight gas reservoirs resulted in very long MHF fractures which failed to achieve desired results....[Contd]
 
===Explosive Fracturing===
{|border="2" cellspacing="0" cellpadding="4" width="80%"
|align = "center" bgcolor = "#9BBB59" colspan = "4"|'''Explosive Fracturing'''
|-
|align = "center" bgcolor = "#9BBB59"|'''S.No'''
|align = "center" bgcolor = "#9BBB59"|'''Company/University'''
|align = "center" bgcolor = "#9BBB59"|'''Patent'''
|align = "center" bgcolor = "#9BBB59"|'''Solution'''
|-
|align = "center"|1
|align = "center"|'''Gas Technology Inst'''
|align = "center"|<font color="#0000FF"><u>[http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO1&Sect2=HITOFF&d=PALL&p=1&u=%2Fnetahtml%2FPTO%2Fsrchnum.htm&r=1&f=G&l=50&s1=6880646.PN.&OS=PN/6880646&RS=PN/6880646 US6880646B2]</u></font>
|align = "center"|Perforate well casings by application of laser energy
|-
|}
 
 
====Gas Technology Inst====
 
[http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO1&Sect2=HITOFF&d=PALL&p=1&u=%2Fnetahtml%2FPTO%2Fsrchnum.htm&r=1&f=G&l=50&s1=6880646.PN.&OS=PN/6880646&RS=PN/6880646 US6880646B2] titled "Laser wellbore completion apparatus and method" by Gas Technology Inst. Conventional method for perforating a well casing shows following problems: <br/>
Perforation by bullet impact usually reduces the permeability of the producing formations resulting in a reduction in production rate....[Contd]
 
===Summary of fracturing problem===
 
To overcome the challenges involved in hydraulic fracturing new techniques have been developed according to the situation. ExxonMobil is working on multi stage fracturing method in lenticular sand and they are also working on horizontal wellbores to facilitate vertical movement of flow able materials....[Contd]
 
==Drilling==
{|border="2" cellspacing="0" cellpadding="4" width="80%"
|align = "center" bgcolor = "#9BBB59" colspan = "4"|'''Drilling'''
|-
|align = "center" bgcolor = "#9BBB59"|'''S.No'''
|align = "center" bgcolor = "#9BBB59"|'''Assignee'''
|align = "center" bgcolor = "#9BBB59"|'''Patent'''
|align = "center" bgcolor = "#9BBB59"|'''Solution'''
|-
|align = "center" bgcolor = "#9BBB59" rowspan = "2"|'''1'''
|align = "center" rowspan = "2"|'''Schlumberger'''
|align = "center"|<font color="#0000FF"><u>[http://appft1.uspto.gov/netacgi/nph-Parser?Sect1=PTO1&Sect2=HITOFF&d=PG01&p=1&u=%2Fnetahtml%2FPTO%2Fsrchnum.html&r=1&f=G&l=50&s1=%2220100243242%22.PGNR.&OS=DN/20100243242&RS=DN/20100243242 US20100243242A1]</u></font>
|align = "center"|Performing fracturing by the drilling string.
|-
|align = "center"|<font color="#0000FF"><u>[http://appft1.uspto.gov/netacgi/nph-Parser?Sect1=PTO1&Sect2=HITOFF&d=PG01&p=1&u=%2Fnetahtml%2FPTO%2Fsrchnum.html&r=1&f=G&l=50&s1=%2220090151938%22.PGNR.&OS=DN/20090151938&RS=DN/20090151938 US20090151938A1]</u></font>
|align = "center"|Simultaneously drilling a wellbore and fracturing a formation
|-
|align = "center" bgcolor = "#9BBB59"|'''2'''
|align = "center"|'''Halliburton'''
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|-
|align = "center" bgcolor = "#9BBB59"|'''3'''
|align = "center"|'''<nowiki>### </nowiki>'''
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|-
|align = "center" bgcolor = "#9BBB59"|'''4'''
|align = "center"|'''<nowiki>### </nowiki>'''
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|-
|align = "center" bgcolor = "#9BBB59"|'''5'''
|align = "center"|'''<nowiki>### </nowiki>'''
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|-
|align = "center" bgcolor = "#9BBB59"|'''6'''
|align = "center"|'''<nowiki>### </nowiki>'''
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|-
|align = "center" bgcolor = "#9BBB59"|'''7'''
|align = "center"|'''<nowiki>### </nowiki>'''
|align = "center"|<nowiki>****</nowiki>
|align = "center"|<nowiki>****</nowiki>
|-
|}
 
These sections now concentrate on the work done by the companies or institutes.
 
===Schlumberger===
 
[http://appft1.uspto.gov/netacgi/nph-Parser?Sect1=PTO1&Sect2=HITOFF&d=PG01&p=1&u=%2Fnetahtml%2FPTO%2Fsrchnum.html&r=1&f=G&l=50&s1=%2220100243242%22.PGNR.&OS=DN/20100243242&RS=DN/20100243242 US20100243242A1] titled "Method for completing tight oil and gas reservoirs" by Schlumberger. Conventional well treatment procedure involves time consuming process steps viz., drilling the well, removing the drilling assembly and then fracturing the well....[Contd]
 
[http://appft1.uspto.gov/netacgi/nph-Parser?Sect1=PTO1&Sect2=HITOFF&d=PG01&p=1&u=%2Fnetahtml%2FPTO%2Fsrchnum.html&r=1&f=G&l=50&s1=%2220090151938%22.PGNR.&OS=DN/20090151938&RS=DN/20090151938 US20090151938A1] titled "Stimulation through fracturing while drilling" by Schlumberger. The conventional method of drilling, completion and stimulation are expensive and time consuming, as it comprises the steps of drilling a well, removing the drilling assembly and then fracturing the well....[Contd]
 
===Summary of drilling problem===
 
Drilling is very important and essential step for recovery of tight gas from the reservoir. Schlumberger is focusing to develop assembly for simultaneously performing drilling and fracturing a wellbore....[Contd]
 
==Fracturing and stimulation in high temperature and high pressure formations==
 
===Information from the articles===
Curtino et. al., 2011 of Petroleum Development Oman (PDO) studied on Challenges for recovering gas in fracturing a deep, high- pressure, and high- temperature formation of Oman. <br/> Challenges with respect to high temp and pressure overcame by creating high bottom hole pressure inside the deep well by using a high density crosslinked fracturing fluid (sodium bromide- base fluid) and Hybrid fracturing techniques....[Contd]
 
===Summary of high pressure and high temperature problem===
 
Articles say fracturing of high pressure and high temperature tight gas reservoir requires specially developed compounds for performing successfully fracturing of these reservoirs....[Contd]
 
==Miscellaneous==
===Information from the articles===
Eller. G. J., et. al. 2002 studied on "A Case History: Use of a Casing-Conveyed Perforating System to Improve Life of Well Economics in Tight Gas Sands" of Marathon Oil Company. Problem with a conventional approach is "cherry picking" the best sands in a well for stimulation, which leaves a large percentage of pay unstimulated and it also prohibited evaluation of low-quality Beluga sands to determine whether they could be commercially developed and added to the reserve base....[Contd]
 
=Appendix=
==Technical Analysis==
 
{|border="2" cellspacing="0" cellpadding="4" width="80%"
|align = "center" bgcolor = "#4F81BD"|<font color="#FFFFFF">'''S.No'''</font>
|align = "center" bgcolor = "#4F81BD"|<font color="#FFFFFF">'''Author'''</font>
|align = "center" bgcolor = "#4F81BD"|<font color="#FFFFFF">'''Company/University'''</font>
|align = "center" bgcolor = "#4F81BD"|<font color="#FFFFFF">'''Testing Area'''</font>
|align = "center" bgcolor = "#4F81BD"|<font color="#FFFFFF">'''Fracturing'''</font>
|align = "center" bgcolor = "#4F81BD"|<font color="#FFFFFF">'''Fluid/Proppant'''</font>
|align = "center" bgcolor = "#4F81BD"|<font color="#FFFFFF">'''Result'''</font>
 
|-
|align = "center" bgcolor = "#DBE5F1"|'''1'''
|bgcolor = "#DBE5F1"|Nasr-El-Din et.al., (2007)
|bgcolor = "#DBE5F1"|Saudi Aramco
|bgcolor = "#DBE5F1"|Carbonate formation of Saudi Arabia
|bgcolor = "#DBE5F1"|Acid Fracturing
|bgcolor = "#DBE5F1"|28wt % HCl, Pickling acid treatments
|bgcolor = "#DBE5F1"|Large amount of iron and traces of Manganese, Zinc was found during the treatment of sour well
 
|-
|align = "center"|'''2'''
|Nasr-El-Din et.al., (2007)
|Saudi Aramco
|Carbonate formation of Saudi Arabia
|Acid Fracturing
|15 wt% HCl and 9wt% formic acid, Borate gel, Viscoelastic surfactant based acid, gelled acid systems and surfactant-based acid system
|Surfactant-based acid showed better cumulative production.
 
|-
|}
 
=References=
 
*[[Website references]]
382
edits